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ABSTRACT

Surface creases (ridges and ravines) provide Usimiportant information about the shapes of objaats can be
intuitively defined as curves on a surface alongctiihe surface bends sharply. These features taskan many areas
such as computer vision and image processing. Ehargh a significant amount of research has besttgid to defining

and extracting ridges and ravines some fundamehtdlenges remain.

The authors in [6, 21] have recently shown theaation of ridge and height ridge as a generalizszhll
maximum in2-D Riemannian Geometry, and have presented a newithlgoto extract height ridges fro&+D images.
Here, we are concerned also with attraction ridugk leeight ridge definitions as a generalized logakimum, but im-D
Riemannian Geometry, and then we have a new ahgotib extract height ridges fro8aD and n-D images. The results in

this paper considered as a continuation to [1].2, 3
KEYWORDS: Ridges; Height Ridges; Ridge Directions
1. INTRODUCTION

Surface creases (ridges and ravines) provide Usimiportant information about the shapes of objaats can be
intuitively defined as curves on a surface alongciithe surface bends sharply. Mathematical detsenipf such features
is based on a study of extrema of the principalatures along their curvature lines. On a smootege surface, we
define ridges to be the local positive maxima @& thaximal principal curvature along its associatedsature line and
ravines to be the local negative minima of the maili principal curvature along its associated cumetine. The ridges
and ravines are important for shape analysis asdgss remarkable mathematical properties. Thesedsare one of the
most sought after features in areas ranging frompeger vision [11, 15] and image processing [8letasor analysis [20,
23] and combustion simulations [10]. Consequentlgfining and extracting ridges from digital datas haeceived

significant attention across different communitiesulting in various competing concepts and a pletlof algorithms.

Eberly et al. [8] compare several definitions afges, extend Haralick's 'height' definition [12}cimultiple

dimensions, height ridges are a commonly used stigeture [8,9,17,18,19].

The authors in [4,5] provided a new approach taaextridges (as local maximum) and ravines (aslloca
minimum) in images by the gradient, Hessian madrid its derivatives of this images, and they predid new approach

in [18], a new algorithm in [6] to extract heiglidges (generalized local maximum) 2D images.

The basic concepts in linear algebra which utilizethis paper can be found in a text on matrixysia such as

[14], also, basic concepts in differential geomdlogal extrema and tensors) can be found in adstahcalculus text such
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as [16, 17, 22].

The paper is organized as follows. In the secontise we review the definitions of ridges and tigdges as a
generalized local maximum imD Riemannian geometry, amdD Euclidean geometry. In the third section, we piledi
an algorithm for extracting the height ridge on ges in3-D Riemannian geometry ar@iD Euclidean geometry. The
fourth section we provided a generalized algoritbnextracting the height ridge on imagesiD Riemannian geometry

andn-D Euclidean geometry.
2. RIDGES

In this section, we present generalized for deéing of ridges and height ridges nRD Riemannian geometry,
and then we review definitions of ridges and hergdges inn-D Euclidean geometry as a special casafbrRiemannian

geometry.
2.1.Ridges as Generalized Local Maximum

We now take a closer look at the definition of loéaximum of a functionfec(R",R) Ridges will be a
generalization of local maxima whereby the testnfiaximality off(x) is made in a restricted neighborhoodkoA similar
concept of ravines generalizes local minima, butesiocal minima of are local maxima of, it is sufficient to study only

the concept of the ridge.

Let fec’(R", R) whereR" is assigned a Riemannian geometry. A piista critical point foff if v fi(x) = O for all
directionsv. At a critical pointf(x) is a local maximum if/ fi(X) V < 0 for all directionsv. The pointx is called a local
maximum point. Let; throughv, be linearly independent vectors and define thedewn . where, as a matrix, the"

column is the vector..

The test for local maximum points becomésf_j =0 for 1 <i<nandV, \)_J- fi is ann x n negative definite

tensor.
Rather than testing for a ridge (local maximumalim directions, It is possible to restrict attentto the only

n - ddirections ford = 0 ord = 1. Let the directions be denotedthroughv,_qand define th@ x n-d matrixV =

[V'J wherel<r<nandl<c<n-d

Definition 2. 1. A pointx is a Ridge point of typd relative toV if V; f; = 0 for 1 <i < n-dandV¥; V; f,, is ann-

dx n-d negative definite tensor.

Note thatV; fj = 0 is a system of - d equations in n unknowns which, by the Implicit Etion Theorem,
typically has solutions which lie ardimensionamanifolds. The terminology typein the definition is used to reflect the

expected dimensionality of the solution set. Alsote that local Maximum are just special cases$isfdefinition when
d = 0. Such points typically are isolated and are ladbekd-dimensionaktructures.

In the casal = 0, any choice oV yields the same local Maximum. Whdn= 1, there are many choices fgr In
this paper we will concentrate on the cades0, d = 1and only one choice fdr. Generally, the choices will depend on

the needs of a particular application.
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Special Case
Ridges as Generalized Local MaximummiD Euclidean Geometry. A poirtis a critical point foff if
V'Df(x) = 0 for all directionsv (equivalently Df(x) = 0).

At a critical point,f(x) is a local maximum i#'D%(x)v < O for all directionsv (equivalently,D*(x) is negative

definite) and in this caseis said to be a local maximum point.

Let v; throughv, be linearly independent directions and densts then x n matrix whose columns consist of

these directions. The test for ridge (local maximpmints is concisely written a& Df(x) = 0 andV'D*(x)V < 0.

Rather than testing for a ridge (local maximumplhn directions, it is possible to restrict attentionanly n-d

directions ford = 0 ord = 1. The definition is summarized below.

Definition 2. 2. Letfec(R",R). Ford = 0 ord = 1 and amxn-d matrixV of rankn-d, the pointx is a Ridge point
of typed with respect to/ if V' Df(x) = 0 andV'D#(x)V < 0.

2.2.Height Ridges

The convexity (concavity ) play the essential riolehe choice of the vectoks on the height ridge. Therefore, a
ridge point on the graph is a place whidfas a generalized local maximumidimensionatlirections where the graph of
f is concave. The motivation comes from the casmensionaimages, where peaks of the terrdir 0 can be simply
characterized a local maximum. The height ridga isdge point for which the function has a localxinaum in the
direction for which the graph has the largest cuitgaSince eigenvalues df; measure convexity, and concavity in the

corresponding eigendirections, a natural definifammgeneral height ridges is given as the follayvin
Definition 2.3. (Height Ridgé. Letfec’(R",R) whereR" is assigned a Riemannian space./.andv;,

(i=1, 2, .., n), be the generalized eigenvalues and eigenvengsectively forf; in the following sense.
Define the diagonal tensaf, whosei™" diagonal entry ig; and wheré\< 1, - 4,. Define the tensor . whosec" column

of a matrix is the vector, and for which/; v, = ;. Finally, let the tensors satisfy V. = v 2.

A point x is ad-dimensionakidge point if it is a generalized local maximumint of typed = 0 ord = 1 with
respect to/ . SinceV, fu v'_,-= Jil /1'_1- is diagonal and since the eigenvalues are ordéredest for a ridge point reduces to
Vifi(x)=0,(=1,2,..,n-dandi,«x) <O.

Special Case

The metricg; in Euclidean geometry is equal dp, thus, we present the special height ridge démitn n-D

Euclidean geometry as the following

Definition 2.4. (Height Ridg&. Letfec?(R",R) whereR" is assigned a Euclidean space. Lefi = 1, 2, ..., n) be
the eigenvalues dd?f with \,< 1, A, Letv, (i = 1, 2, ..., n) be corresponding unit-length eigenvectors. A pois ad-

dimensionakidge point ifx is a generalized local maximum point of typwith respect to/ = [v; .... \i4 . Since

V' D¥ V = diag{ /s, ... ./n.qt and since the eigenvalues are ordered, the teatrfdge point reduces ' Df(x) =
0 andi,q (X) <O.

Remark. The restriction to unit-length eigenvectors is netessary.
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3. GENERALIZED ALGORITHM FOR EXTRACTION HEIGHT RIDGES

Constructing closed-form representations for ridgegenerally intractable. F@-D through4-D, it is possible to
solve symbolically for the eigenvalues and eigetoscin closed form. However, solving explicitlyrfthe roots of the

first derivative equations is not possible.

For dimensions: >5 there are no formulas for the roots of polynomieisdegreen ([10], Theorem 5.7.3)
Numerical algorithms for solving eigensystems nhesused instead. We provide ridge algorithms whéckd themselves

to numerical computation.

As in the case 02-D images [6], we construct ridges on a subpixelll&yeselecting an initial guess to a ridge

point, searching for a nearby ridge point, themdraing the ridge curve by following its tangents.
3.1.  The Generalized Algorithm in &*
3.1.1. The Generalized Algorithm in 3-D Euclidean Geometry

The construction of the ridge near the semi-umbiliat least two eigenvalues are equal) is very ticatpd

because the eigenvectors can be discontinuous.

The eigensystems f@’f are given byf; u = a U, f; v = B v, andf; w; = » w; wherea < § <y andu, v,andw

form a right- handed orthonormal system (the vectoe all unit length, mutually orthogonal, adiviw, = 1). Define
P= Uifyi s Q = V|f'i ,andR = Wf,i .

According to the height ridge definition, a poing & is al-D ridge point ifP(x) = 0, Q(x) = Q ands(x) < 0, the
two equations® = 0 and Q = 0) define surfaces whose intersection is the ridgevee The tangents of curves of
intersecting surfaces are orthogonal to both sarfamrmals, so the ridge direction is DP x DQ. Témainder of this

section shows how to compute the ridge directiahwses tensor notation.
We assume thatis, at least, &C° function, this guarantees continuity of ridge difens, except possibly at
umbilics points (this is points whieh= g = y) or at semi-umbilics points (this is points whick S or S = y).

At semi-umbilics ¢ = § ) the eigenspace has a dimension larger thantthodgh the eigenvectors may become

discontinuous, it is possible to choose a smoothlying basis for the eigenspace. Assume fhaty in the region for

which we seek ridges. LéiiE andv be smoothly varying orthonormal vectors which spam>=L. The eigenvector basis
and the smooth basis are related by
U, C11 €21 Uk

— — ("
Uk C12 €22 Uk, Uk

g

whereC = [c;] is an orthogonal matrix. Define

Pl [P
2|70
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soP = 0andQ = 0if and only if15 =0 and{:}i - O. The ridge algorithms will require differentiatirf?;and Q

The following development provides closed form $iols for these derivatives.

Sinceu, Lq, andw form a smoothly varying orthonormal system, tigrivatives satisfy
U j 0 0 (a; U;
'?.L’.E_j — f-{-j — IE?J' 0 w;

for some choice of continuous vectaysindb;.

Differentiatingn5 andQ yields
Pr | | Wfat+wefs | | futhi+ Rag

@.k B fr'f.-ai.ﬂ- + Eﬁ.kf.:‘ N f_,!;i't_’?' -+ Rb;ﬁ
The two vectorsy andby are determined by the eigensystemvipnamely
f.a'j w; = YWw;.

Differentiate this to obtain
f‘.a";r' u"j..i: . f.fjklir.;' = YW; i + 7Y R W;.

Substitute fow;; and rearrange to obtain

(fi% — YW)ag + (f 475 — 70:)br = fajew; — v awi

Contracting Withu andle respectively yields

(Wi f a8 — v)ax + (Wifi0;)0k = fiprttiw;

(Ui f %)) an + (Uil 4505 — 7)bx = firviw;.

This is a system of two equations in the two unkmaectorsa, andby, which can be solved explicitly as

R L £ _

b B v; f.a'.;'ﬂj U f.r,j'l_-!J — 7 f.r'jﬁ'ﬁf Wy

Using the relationships between the eigenvectodgtaa smooth basis, we obtain
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1 i
ak | _ ot | e aktitt;
B .. I LI 1
b Ff.ij.bl-g w;
Substituting into the formulas fd‘.:rIl k andQ X yields
Po| e | 24 +3 f:mt w;

Q

The matrixC is an unknown quantity, but we will see that ridggeversal only requires knowindet(C) = +L
With this in mind, define

—~

Py | | otherb— f,}; ;W 3.1)
Qr | | Bur+ :’ fu“ w; -

Q

These quantities will in effect play the role oktherivatives of15 and * despite the fact that they are not

necessarily the derivatives of some functiqﬁ-ﬁandQ. The use of index/derivative notation is used ssgygely to remind
us how the quantities were obtained.
Ridge Flow

Given an initial approximatiomd to a ridge point, a flow path to the ridge is detimed by gradient descent.

P2(x)+ Q*())/2

Ridge points occur as absolute minimum points fdre tfunction I:

Note that
[P Q1=[P QIC_ [P x Qx]=]P fj,k]':’ PP.i1+QQ,;=PP +QQ)
Therefore, the gradient descent is modeled by
Tl Pla(e)Pit) ~ Qa@)Pue®), (0) = A, i=1.2,3
(3.2)

The solution curve terminates at tifie> 0 if P(x(T)) = 0andQ(x(T)) = Q, or if a positive local minimum is

reached, in which case a different starting pdioigd be used. The poir = x(T) will be used as the starting ridge point
for ridge traversal. The nice consequence of #ésslilt is that one does not have to explicitly carcdtsmoothly varyinéu

and v in order to compute the flow direction to a riddde (possibly discontinuous) eigenvectarandv can be used

instead to produce the continuous flow direction.
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Ridge Traversal

Let & be the initial ridge point obtained by ridge floMv.T(x) is a unit length tangent vector to the ridge, tthen

ridge can be traversed by solving a system of arglidifferential equationglx/dt = T(x).To determin€el (x), note that the

P(x) =0

ridge curve is a solution t('? and @I:X) = (. The curve is the intersection of the two implicidefined

surfaces whose normals el:F andDQ‘. The curve direction must be perpendicular to bathmals, so choosEto be

the cross product of the normalri- l:x] = € jk P_,j ::x] fj}k I:X) where gy is the permutation tensor on three

symbols.

As in ridge flow, we do not have to explicitly caongt smoothly varyingu andF to obtain a continuous ridge
direction.
[DP DQ]=[DP D@]c

Since and C is orthogonal, the cross products are related by

DP (x) X D@ (x) = det(C(x)) DP(x) X DQ(x)

, where|det(C(x))| = 1 The discontinuity of the cross
product is captured entirely let(C(x)) If a semi-umbilica=p causes eigenspaces to be swapped, or if the raaheri
eigensolver does not provide a smoothly varyingo§etigenvectors as varies, then such behaviour will affetzt(C(x))
and can be detected in the implementation by coimpahe angle between the previously computed timecand the

currently computed direction. The system of equetidetermining the traversal is therefore

T = te P alD)Gu(e(®), (0)=Ryi=123 (33

where the two traversals are required.

3.1.2. The Generalized Algorithm in 3-D Riemannian Geometry

The height ridge definition which was discussedétail in sectior(3.1.1)is extended to the case of Riemannian
geometry. Lef; U = a u, f;V = £V, andf; W = »w wherea < <y, uu' = vV =ww = 1, anduv' = uw = v;w' = 0.
DefineP = U f;, Q = Vf;, andR = wf; . According to the height ridge definition, a poine &® is al-dimensionatidge
point if P(x) = 0, Q(X) = Q andp(x) < 0.

Equation(3.1) generalizes to
P auy, + 2 f i
Lk kT gy ) gkt

Q B Bk + %f kv oy (3.4)

which specifies the quantities that play the rdléhe covariant derivatives of P and Q despitefétoe that neither
‘D,k nor Qk are the covariant derivatives of some tensﬁrsr Qm The model for ridge flow given by equatigd.2)

generalizes to
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dzr’

dt

= —¢¥(PP; +QQ;) = —PP' — QQ', z'(0) = A, i = 1,2,3,
(3.5)

whereA is an initial approximation to the ridge. If tHew terminates at tim& > 0 whereP(x(T)) = O thenR =

X(T) is used as the starting ridge point for ridgeversal. Ridge traversal given by equati®!8) generalizes to

17t 2 s o e . 5
© = tgUeug" " P, Q. = £ PGy, 2'(0) = RY(0), i=1,2,3,

dt
(3.6)
where gy is the permutation tensor on three symbols. tl&ng of the indices on the permutation tensor is
required to produce a tangent vealdrdt.
3.2. The Generalized Algorithm in &
3.2.1. The Generalized Algorithm inn-D Euclidean Geometry

The problems with semi-umbilics occur for3. The ideas for dimension=3 generalize to higher dimensions.
Let the eigenvalues and eigenvectors B3f be denoted respectively andv, for 1 <k < n. The semi-umbilicsi, = 4,
correspond to branch points and end points ofittger The semi-umbilics = A (i # n, j# n) reflect symmetries of the
dataset, but should not cause termination of ttgericonstruction. We assume that the ridge corngirués in regions
where 1,1 < 4, so that the eigenspaces corresponding to the rfilsteigenvectors never swap or combine with the

eigenspace corresponding to the last eigenvalue

Let v; be an orthonormal matrix (with determinant 1) wh@®lumns are unit-length eigenvectors Bof; the

columns form a right-handed orthonormal systemilddl eigensystems can be written as a single medriation

fi Vik = Vi 4k wherej; is a diagonal matrix whos#' diagonal entry is the eigenvalue correspondinghto

eigenvector which is th&' column ofv;.

DefineP; = v; f;. According to the height ridge definition, a paiat & is al-dimensionatidge point ifP;(x) = 0
for 1 5 <n- 1andina(x) < 0, then-1 equations?;(x) = 0 definen-1 hypersurfaces whose intersection is the ridgeecurv
The ridge directions must be orthogonal to all bypersurface normals, so it is the generalizedscpeduct of the

gradientsDP;. The remainder of this subsection shows how topegenthe ridge direction use thing the tensor ratat

The construction includes indices whose range tiwden1 andn-1 rather than the full range betwekandn. As
a notational aid, indices in the randethroughn-1 will be subscripted with @era Indices in the full range are

unsubscripted. The indexis the dimension of space and does not indicateeaindex.

Definew; = vi, , y =1, andR = wf;. Let ﬁij denote a smoothly varying orthonormal matrix whiase column is

w and whose firsh-1 columns sparw.><, The firstn-1 eigenvectors and the smooth basis<$or> are related by

'il" |:'i'-|_] — Fl'-vh'r{rjl;u'.n
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whereC;_; is an orthogonal matrix, define

P in — F.ii;,f.." — 153 Cipig

soF; = (ifand only ifPiD =10. The ridge algorithms will require differentiatirf_éu.

g

Orthonormality ofl? j; implies

o~

TkiVkj = 0ij = VikUjk
differentiating yields
Fﬁ:fﬁ.l;,r';m + FL'.".:HT-!L:".? =t
The derivatived” kj,m Can be written in terms of the orthonormal basis a
Uk 40— ﬂ-jh?'.'FL'F
wheregy is a continuous quantity that will be determinatét. Replacing this in the previous equation eld

0= Fﬁ'fﬂ;jf?ut—rﬂcf . ﬂ."f.'wi.i'i?.i.;j = Qjim En Qi jm -

Thus,aym, is antisymmetric in its first two indices. Withdoss of generality, we can ChOC@?szDJ.: = D,

(io # jo) since these components represent rotations ofebrs within the orthogonal complementvaf The

vectors must be a solution to

Tiigj = QignjWi aNd  W;j = —QiypiTis,
differentiatinglﬁin yields

P."”.i' — F."E,_,f.ii.' +?£FU.I.'_f..f — f.;fn:.f?.fr',-J = o Hﬂ-f’,m.ﬁ'-
The ﬂiuﬂk are determined by the eigensystemvipnamely

fijw; = yw;
differentiate this to obtain
fijwik + Fijrw; = YWik + 7xWi

substitute fomi; and rearrange to obtain
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(f._fj?-_’jig - Af'f_-’-e'-éﬂ}aiunk — f.ﬁjkwj s

contracting withl’ ; jo Vields

{t'rijﬁf-f.ft'!ﬁﬁ il P:'ﬂinjf])ain’-'ll' o f-ij-i"tr?.]‘-ﬂ't':’l}

This system of equations can be solved explicgljoiows. Using the relationships between the migetors and

the smooth basis, we have
Vijof 110510 — V0jnio = VikyChojo f.ijVimoCloio — V9joic

= Ckujn(v iko f ES 1’j?ﬂ.u)cl’ﬂufu == Td,}'n!'u
= Chg jﬁ(’l*‘-mn Ui j;'t jmn)f-'*.rnujg = ";'5_-;'“ ig
== Ckujn{fj-ﬂ'uj }\_ﬁm.}cmniu - ’1'"5.?'01'1_&
= Cky j{'}}"kﬁ?’nﬁcﬁiufu T ’]’Eﬂ'[ﬂn‘ﬂ'u?ﬂ-:lE??infu
= Ckujn(}"kunm = F}'{:"ﬂcnm.;])f-'nmi._-.

and

1, ijkVijeWj = Cigjy I gk Viig Wy

The system can be reduced as shown Wﬂ}cr.% is the diagonal matrix whos}éﬁh diagonal entry ié’tku —Y

andﬂ[ﬂﬁ.u is the diagonal inverse matrix:

f?iju f.f.ft_-'j_!-n — "F'éi[]j”)ﬂ-inﬂ_;- — fijr'\'ﬁij._-, u’j
C;:gjﬂ ()\llft]'f'.l'-'n o '-‘."()'I‘U Ty }C”'lgf.n a"ll-nﬂ.lil' = C*;[IJ[] fi'_; .I."I-Iz'jn'lb'j
(Ajomg — VOjoms ) CmyiqGignk = [ ijkVij,W;
—1
C”l".'l?-'t] a"l’-nﬂ.liu' = &?nﬁj{} f".}'l'vfj{pulj
] == 1 _.l + 1 [ & e y
Qink = CI?L[]znﬁlmnju f,.lj.{: Vi, W;-

Substituting into the formula fdj .k Yields
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Py =Ty, fax + Raypy
= VijaCiio fa+ PC”““” m,l-,ljf_,,Jf'..!'.,r'ﬂ"t'!.".l'.rwj
= Cjyip(Vijo S ax + RA ,,,;_,f.s,;a-'l-'-m..uig}
= Cjoio (VkkoMtodo + RAL ;. fiikViko;s).
Define
ﬁi"n..h‘ — 'l"IL'J|_~"\.h]?|| + Ri}*;r}[,f.a'.j.l_'lj.i.,l}; ﬁij- (3?]
These quantities play the role of the derivativbbﬁ% despite the fact that they are not necessarilylénivatives

of some functionsPiD.

Ridge Flow

Given an initial approximatiomd to a ridge point, a flow path to the ridge is detimed by gradient descent.

Ridge points occur as absolute minimum points If(mrflmctionPiD (1’] Pi.:: (X]fz Note thatF_i PJDCJulo and

‘D_io,k Jnln'ﬂn k. soP P Pin ﬁin,k . Therefore, the gradient descent is modeled by

Enilt) _P. (z(t))P,, i(z(t)), z:(0)=A;,1<i<n. (3.8)

The solution curve terminates at timie> O if Piu] (X[T]) = () or if a positive local minimum is reached, in

which case a different starting point should bedudée point® = x(T) will be used as the starting ridge point for ridge
traversal. As in the case tfdimensionatidges in&®, the continuous flow direction is calculated ditgdérom (possibly

discontinuous) eigenvectors and eigenvalues.
. Ridge Traversal

Let & be the initial ridge point obtained by ridge flodv.T(x) is a unit length tangent vector to the ridge, tthen

ridge can be traversed by solving a system of argiidifferential equationglx/dt = T(x) To determindé (x), note that the

ridge curve is the intersection ofl surfaces implicitly defined b)5 i l:x] = (). The curve direction is, therefore, a

vector which is orthogonal to ait1 surface normalﬂwi. The way to construct a vectére &' which is orthogonal to

n- 1 orthogonal vectors is to use the generalized qrosduct

:‘_r;- r— El'f-il"'f:r.—l_Pf--ij S P”_l-ju--l
where €;;  ,_,is the permutation tensor am symbols. LetE;, ;. be the permutation tensor onl
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symbols; then

1 oy e
= B Fra o Paogesen Py g
i (H — 1]| ik] n—1"J1**Ia—-1" J1.81 In—1:tn—1
B, : B P
o {n — 1]!'2“1'“"-"“|'}:-}]"'.J1i'l--]{'!"|_."l II'3]3| n l["-'E'L'f.'—l..lln—l dn—1tn—1
B S ) Rl Y | 'il'l._.i'l ‘Il'rl—J.fr.—I {'?1 T 1}| ~ii-ig_1+ k1iy kn_1in_1
1 A 3
= {iﬁf{[_r}flbl“';'l:—l i fE"I-'".]"""-':'-—lP'I-r]r-J A PJL'I:—Il;u—I
(n—1)!

= det(C)eiiyiy_ Priy -+ Potiy s

Any sign-changes or swapping of eigenvectors witkin>: Produced by partial umbilics or the numerical
eigensolver will be reflected in the determindat(C) But sinceC is orthonormal, the determinant is eittieor -1. The
key result again is that you do not need to keapktrof smoothly varying eigenfields. One can simpbmpute the
eigenvectors, compute the ridge direction, and sbabe sign of the direction so that the currengéatiion forms the

smallest angle with the previous direction. Theesysof equations determining the traversal is tioeee

B0 - ey i Pra@(®)- Prosi,(@(0), 70)=Ri 1<i<n,

dt =
(3.9)

'-'I:-'I—]

where the two traversals are required.
3.2.2. The Generalized Algorithm in n-D Riemannian Geometry

The general height ridge definition férdimensionakridges which was discussed in detail in sec(®2.1)is
extended to the case of Riemannian geometryf;Lék = V' ;' , wherel is a diagonal tensor whogkdiagonal entry is the
generalized eigenvalue corresponding to the gemedakigenvector which is tH& column of\/,j treated as an x n

matrix.

DefineP,; = vi,j f. and according to the height ridge definition,ainpx € &'is al-dimensionatidge point ifP;(x)
=0 for

1<j<n-1landl,4(x) <O.

Using the same convention for index notation asulmsectior(3.2.1) we can extend the equations in that section.

Equation(3.7) generalizes to

ﬁ":'-'-'{-' == L]JL'J}J'J\I!I.“ T R&_ &lrf...".]-.&'.li.l;,-..ulj' (310)

n o,
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Whereﬂi_nﬁ.n is the diagonal inverse tensor for the diagormtd)eﬂinjnwhosekgh diagonal entry ié‘uko — Y.

The vectow is the generalized eigenvector correspondinggeraialuey = 1, and the valu® = V\}f,i. The summation over
jo is not intended as a tensor summation, but isrgolsi arithmetic sum, so the rule for pairing a cawdriant and a

covariant index does not apply here. The modefiflzre flow given by equatio(8.8) generalizes to

dz’ W ~. ; : i 9 11"
— = —g¥ B P s=—F P 2 (0 =A" 1<i<n (3.11)
o+ 1p.] 0" In,.
dt
whereA is an initial approximation to the ridge. If tHew terminates at tim& > 0 whereP(x(T)) = Q then® =
x(T)is used as the starting ridge point for ridgedraal. The summation overis not intended as a tensor summation, but
is just a simple arithmetic one, so the index cotiea of pairing a covariant with a contravariantléx does not apply

here. Finally, ridge traversal in equatig®9) generalizes to

d:{ﬂ; _ "'J. 3 '.l';.ljf} .}.'l -]'I.‘I—] B
i g E.;'J'J..-J'n_n.gJ liy---8 n—1in_y

=4 gttt Pt )] =Ry I35 m

(3.12)

1.1"' i]‘t — 1.1 jl i]‘t ..fn - . - - 1
where € g - g €, ... j, and €, _ ;, are the permutation tensors ansymbols. the
raising of the indices on the permutation tensmeisessary to guarantee that/dt is a tangent vector.

CONCLUSIONS

The two algorithms in this paper confirmed the hssin the 2-dimensionalimages in [6, 21]. For details, the

ridges on the two images (saddles and translatepeabtained using the algorithm in section Bin [
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