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ABSTRACT 

Surface creases (ridges and ravines) provide us with important information about the shapes of objects and can be 

intuitively defined as curves on a surface along which the surface bends sharply. These features are a task in many areas 

such as computer vision and image processing. Even though a significant amount of research has been directed to defining 

and extracting ridges and ravines some fundamental challenges remain. 

The authors in [6, 21] have recently shown the attraction of ridge and height ridge as a generalized local 

maximum in 2-D Riemannian Geometry, and have presented a new algorithm to extract height ridges from 2-D images. 

Here, we are concerned also with attraction ridge and height ridge definitions as a generalized local maximum, but in n-D 

Riemannian Geometry, and then we have a new algorithm to extract height ridges from 3-D and n-D images. The results in 

this paper considered as a continuation to [1, 2, 3]. 
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1. INTRODUCTION  

Surface creases (ridges and ravines) provide us with important information about the shapes of objects and can be 

intuitively defined as curves on a surface along which the surface bends sharply. Mathematical description of such features 

is based on a study of extrema of the principal curvatures along their curvature lines. On a smooth generic surface, we 

define ridges to be the local positive maxima of the maximal principal curvature along its associated curvature line and 

ravines to be the local negative minima of the minimal principal curvature along its associated curvature line. The ridges 

and ravines are important for shape analysis and possess remarkable mathematical properties. These features are one of the 

most sought after features in areas ranging from computer vision [11, 15] and image processing [8] to tensor analysis [20, 

23] and combustion simulations [10]. Consequently, defining and extracting ridges from digital data has received 

significant attention across different communities resulting in various competing concepts and a plethora of algorithms. 

Eberly et al. [8] compare several definitions of ridges, extend Haralick's 'height' definition [12] into multiple 

dimensions, height ridges are a commonly used ridge structure [8,9,17,18,19]. 

The authors in [4,5] provided a new approach to extract ridges (as local maximum) and ravines (as local 

minimum) in images by the gradient, Hessian matrix and its derivatives of this images, and they provided a new approach 

in [18], a new algorithm in [6] to extract height ridges (generalized local maximum) on 2-D images. 

The basic concepts in linear algebra which utilized in this paper can be found in a text on matrix analysis such as 

[14], also, basic concepts in differential geometry (local extrema and tensors) can be found in a standard calculus text such 
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as [16, 17, 22]. 

The paper is organized as follows. In the second section, we review the definitions of ridges and height ridges as a 

generalized local maximum in n-D Riemannian geometry, and n-D Euclidean geometry. In the third section, we provided 

an algorithm for extracting the height ridge on images in 3-D Riemannian geometry and 3-D Euclidean geometry. The 

fourth section we provided a generalized algorithm to extracting the height ridge on images in n-D Riemannian geometry 

and n-D Euclidean geometry. 

2. RIDGES 

In this section, we present generalized for definitions of ridges and height ridges in n-D Riemannian geometry, 

and then we review definitions of ridges and height ridges in n-D Euclidean geometry as a special case for n-D Riemannian 

geometry. 

2.1. Ridges as Generalized Local Maximum 

We now take a closer look at the definition of local Maximum of a function f∈c2(ℝn,ℝ) Ridges will be a 

generalization of local maxima whereby the test for maximality of f(x) is made in a restricted neighborhood of x. A similar 

concept of ravines generalizes local minima, but since local minima of f are local maxima of -f, it is sufficient to study only 

the concept of the ridge. 

Let f∈c2(ℝn,ℝ) where ℝn is assigned a Riemannian geometry. A point x is a critical point for f if vi f,i(x) = 0 for all 

directions v. At a critical point, f(x) is a local maximum if vi f;ij (x) vj < 0 for all directions v. The point x is called a local 

maximum point. Let v1 through vn be linearly independent vectors and define the tensor vr
.c where, as a matrix, the cth 

column is the vector vc.  

The test for local maximum points becomes vj
.i f.j = 0 for 1 ≤ i ≤ n and vk

.i v
l
.j f,kl is an n × n negative definite 

tensor. 

Rather than testing for a ridge (local maximum) in all n directions, It is possible to restrict attention to the only  

n - d directions for d = 0 or d = 1. Let the directions be denoted v1 through vn-d and define the n × n-d matrix V = 

[vr
.c] where 1 ≤ r ≤ n and 1 ≤ c ≤ n-d. 

Definition 2. 1. A point x is a Ridge point of type d relative to V if vj
.i f.j = 0 for 1 ≤ i ≤ n-d and vk

.i v
l
.j f,kl is an n-

d× n-d negative definite tensor. 

Note that vj
.i f.j = 0 is a system of n - d equations in n unknowns which, by the Implicit Function Theorem, 

typically has solutions which lie on d-dimensional manifolds. The terminology type d in the definition is used to reflect the 

expected dimensionality of the solution set. Also, note that local Maximum are just special cases of this definition when  

d = 0. Such points typically are isolated and are labeled as 0-dimensional structures. 

In the case d = 0, any choice of V yields the same local Maximum. When d = 1, there are many choices for V. In 

this paper we will concentrate on the cases d = 0, d = 1 and only one choice for V. Generally, the choices will depend on 

the needs of a particular application. 
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Special Case 

Ridges as Generalized Local Maximum in n-D Euclidean Geometry. A point x is a critical point for f if  

vtDf(x) = 0 for all directions v (equivalently, Df(x) = 0). 

At a critical point, f(x) is a local maximum if vtD2f(x)v < 0 for all directions v (equivalently, D2f(x) is negative 

definite) and in this case x is said to be a local maximum point. 

Let v1 through vn be linearly independent directions and denote V as the n × n matrix whose columns consist of 

these directions. The test for ridge (local maximum) points is concisely written as Vt Df(x) = 0 and VtD2f(x)V < 0. 

Rather than testing for a ridge (local maximum) in all n directions, it is possible to restrict attention to only n-d 

directions for d = 0 or d = 1. The definition is summarized below. 

Definition 2. 2. Let f∈c2(ℝn,ℝ). For d = 0 or d = 1 and an n×n-d matrix V of rank n-d, the point x is a Ridge point 

of type d with respect to V if Vt Df(x) = 0 and VtD2f(x)V < 0. 

2.2. Height Ridges 

The convexity (concavity ) play the essential role in the choice of the vectors V on the height ridge. Therefore, a 

ridge point on the graph is a place which f has a generalized local maximum in n-dimensional directions where the graph of 

f is concave. The motivation comes from the case 2-dimensional images, where peaks of the terrain d = 0 can be simply 

characterized a local maximum. The height ridge is a ridge point for which the function has a local maximum in the 

direction for which the graph has the largest concavity. Since eigenvalues of f,ij measure convexity, and concavity in the 

corresponding eigendirections, a natural definition for general height ridges is given as the following 

Definition 2.3. (Height Ridge). Let f∈c2(ℝn,ℝ) where ℝn is assigned a Riemannian space. Let λi and vi,  

(i = 1, 2, ... , n) , be the generalized eigenvalues and eigenvectors respectively for f,ij in the following sense. 

Define the diagonal tensor λr
.c whose i th diagonal entry is λi and where λ1≤ λ2≤... ≤ λn. Define the tensor vr

.c whose cth column 

of a matrix is the vector vc and for which vk
i vkj = δij. Finally, let the tensors satisfy f,ij v

j
.k = vij λ

j
.k. 

A point x is a d-dimensional ridge point if it is a generalized local maximum point of type d = 0 or d = 1 with 

respect to vr
.c. Since vk

.i f,kl v
l
.j= δil λ

l
.j is diagonal and since the eigenvalues are ordered, the test for a ridge point reduces to 

vj
.i f,j(x) = 0, (i = 1, 2, ... , n - d) and λn-d(x) < 0. 

Special Case 

The metric gij in Euclidean geometry is equal to δij, thus, we present the special height ridge definition in n-D 

Euclidean geometry as the following 

Definition 2.4. (Height Ridge). Let f∈c2(ℝn,ℝ) where ℝn is assigned a Euclidean space. Let λi, (i = 1, 2, ... , n), be 

the eigenvalues of D2f with λ1≤ λ2≤... ≤ λn. Let vi, (i = 1, 2, ... , n), be corresponding unit-length eigenvectors. A point x is a d-

dimensional ridge point if x is a generalized local maximum point of type d with respect to V = [v1 .... vn-d] . Since  

V t D2f V = diag{ λ1, ... , λn-d} and since the eigenvalues are ordered, the test for a ridge point reduces to V t Df(x) = 

0 and λn-d (x) < 0. 

Remark. The restriction to unit-length eigenvectors is not necessary. 
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3. GENERALIZED ALGORITHM FOR EXTRACTION HEIGHT RIDGES 

Constructing closed-form representations for ridges is generally intractable. For 2-D through 4-D, it is possible to 

solve symbolically for the eigenvalues and eigenvectors in closed form. However, solving explicitly for the roots of the 

first derivative equations is not possible. 

For dimensions n ≥5 there are no formulas for the roots of polynomials of degree n ([10], Theorem 5.7.3). 

Numerical algorithms for solving eigensystems must be used instead. We provide ridge algorithms which lend themselves 

to numerical computation. 

As in the case of 2-D images [6], we construct ridges on a subpixel level by selecting an initial guess to a ridge 

point, searching for a nearby ridge point, then traversing the ridge curve by following its tangents. 

3.1. The Generalized Algorithm in ℝ3 

3.1.1. The Generalized Algorithm in 3-D Euclidean Geometry 

The construction of the ridge near the semi-umbilics (at least two eigenvalues are equal) is very complicated 

because the eigenvectors can be discontinuous. 

The eigensystems for D2f are given by f,ij uj = α ui , f,ij vj = β vi, and f,ij wj = � wi where α ≤ β ≤ γ and u, v, and w 

form a right- handed orthonormal system (the vectors are all unit length, mutually orthogonal, and eijkuivjwk = 1). Define 

P = uif,i , Q = vif,i , and R = wif,i . 

According to the height ridge definition, a point x ∈ ℝ3 is a 1-D ridge point if P(x) = 0, Q(x) = 0, and β(x) < 0, the 

two equations (P = 0 and Q = 0) define surfaces whose intersection is the ridge curve. The tangents of curves of 

intersecting surfaces are orthogonal to both surface normals, so the ridge direction is DP × DQ. The remainder of this 

section shows how to compute the ridge direction and uses tensor notation. 

We assume that f is, at least, a C3 function, this guarantees continuity of ridge directions, except possibly at 

umbilics points (this is points which α = β = γ) or at semi-umbilics points (this is points which α = β or β = γ). 

At semi-umbilics (α = β ) the eigenspace has a dimension larger than 1. Although the eigenvectors may become 

discontinuous, it is possible to choose a smoothly varying basis for the eigenspace. Assume that β < γ in the region for 

which we seek ridges. Let  and  be smoothly varying orthonormal vectors which span ≺w≻⊥. The eigenvector basis 

and the smooth basis are related by 

 

where C = [cij ]  is an orthogonal matrix. Define 
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so P = 0 and Q = 0 if and only if  = 0 and . The ridge algorithms will require differentiating and . 

The following development provides closed form solutions for these derivatives. 

Since , , and w form a smoothly varying orthonormal system, their derivatives satisfy 

 

for some choice of continuous vectors aj and bj.  

Differentiating  and  yields  

 

The two vectors ak and bk are determined by the eigensystem for w, namely 

 

Differentiate this to obtain 

 

Substitute for wi,j  and rearrange to obtain 

 

Contracting with  and  respectively yields 

 

This is a system of two equations in the two unknown vectors ak and bk which can be solved explicitly as 

 

Using the relationships between the eigenvectors and the smooth basis, we obtain 
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Substituting into the formulas for  and  yields 

 

The matrix C is an unknown quantity, but we will see that ridge traversal only requires knowing det(C) = ±1. 

With this in mind, define 

 

These quantities will in effect play the role of the derivatives of  and  despite the fact that they are not 

necessarily the derivatives of some functions  and . The use of index/derivative notation is used suggestively to remind 

us how the quantities were obtained. 

Ridge Flow  

Given an initial approximation � to a ridge point, a flow path to the ridge is determined by gradient descent. 

Ridge points occur as absolute minimum points for the function . Note that 

 and , so .  

Therefore, the gradient descent is modeled by  

 

The solution curve terminates at time T > 0 if P(x(T)) = 0 and Q(x(T)) = 0, or if a positive local minimum is 

reached, in which case a different starting point should be used. The point ℛ = x(T) will be used as the starting ridge point 

for ridge traversal. The nice consequence of this result is that one does not have to explicitly construct smoothly varying  

and  in order to compute the flow direction to a ridge. The (possibly discontinuous) eigenvectors u and v can be used 

instead to produce the continuous flow direction. 
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Ridge Traversal 

Let ℛ be the initial ridge point obtained by ridge flow. If T(x) is a unit length tangent vector to the ridge, then the 

ridge can be traversed by solving a system of ordinary differential equations, dx/dt = T(x). To determine T(x), note that the 

ridge curve is a solution to  and . The curve is the intersection of the two implicitly defined 

surfaces whose normals are  and . The curve direction must be perpendicular to both normals, so choose T to be 

the cross product of the normals,  where eijk is the permutation tensor on three 

symbols.  

As in ridge flow, we do not have to explicitly construct smoothly varying  and  to obtain a continuous ridge 

direction.  

Since  and C is orthogonal, the cross products are related by 

, where |det(C(x))| = 1. The discontinuity of the cross 

product is captured entirely by det(C(x)). If a semi-umbilic α=β causes eigenspaces to be swapped, or if the numerical 

eigensolver does not provide a smoothly varying set of eigenvectors as x varies, then such behaviour will affect det(C(x)) 

and can be detected in the implementation by comparing the angle between the previously computed direction and the 

currently computed direction. The system of equations determining the traversal is therefore 

 

where the two traversals are required. 

3.1.2. The Generalized Algorithm in 3-D Riemannian Geometry 

The height ridge definition which was discussed in detail in section (3.1.1) is extended to the case of Riemannian 

geometry. Let f,ij u
j = α ui, f,ij v

j = 	 vi, and f,ij w
j = � wi where α ≤ β ≤ γ, uiu

i = viv
i =wiw

i = 1, and uiv
i = uiw

i = viw
i = 0. 

Define P = ui f,i , Q = vif,i , and R = wif,i . According to the height ridge definition, a point x ∈ ℝ3 is a 1-dimensional ridge 

point if P(x) = 0, Q(x) = 0, and β(x) < 0.  

Equation (3.1) generalizes to 

 

which specifies the quantities that play the role of the covariant derivatives of P and Q despite the fact that neither 

 nor  are the covariant derivatives of some tensors  or . The model for ridge flow given by equation (3.2) 

generalizes to 
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where � is an initial approximation to the ridge. If the flow terminates at time T > 0 where P(x(T)) = 0, then ℛ = 

x(T) is used as the starting ridge point for ridge traversal. Ridge traversal given by equation (3.3) generalizes to 

 

where eijk is the permutation tensor on three symbols. the raising of the indices on the permutation tensor is 

required to produce a tangent vector dxi/dt. 

3.2. The Generalized Algorithm in ℝn 

3.2.1. The Generalized Algorithm in n-D Euclidean Geometry 

The problems with semi-umbilics occur for n≥3. The ideas for dimension n=3 generalize to higher dimensions. 

Let the eigenvalues and eigenvectors for D2f be denoted respectively λk and vk for 1 ≤k ≤ n. The semi-umbilics λk = λn 

correspond to branch points and end points of the ridge. The semi-umbilics λi = λkj (i ≠ n, j ≠ n) reflect symmetries of the 

dataset, but should not cause termination of the ridge construction. We assume that the ridge construction is in regions 

where λn-1 < λn so that the eigenspaces corresponding to the first n-1 eigenvectors never swap or combine with the 

eigenspace corresponding to the last eigenvalue λn. 

Let vij be an orthonormal matrix (with determinant 1) whose columns are unit-length eigenvectors for D2f; the 

columns form a right-handed orthonormal system. All the eigensystems can be written as a single matrix equation  

f,ij vjk = vij λjk where λii is a diagonal matrix whose j th diagonal entry is the eigenvalue corresponding to the 

eigenvector which is the j th column of vij. 

Define Pj = vij f,i. According to the height ridge definition, a point x∈ ℝn is a 1-dimensional ridge point if Pj(x) = 0 

for 1 ≤j ≤ n- 1 and λn-1(x) < 0, the n-1 equations Pj(x) = 0 define n-1 hypersurfaces whose intersection is the ridge curve. 

The ridge directions must be orthogonal to all the hypersurface normals, so it is the generalized cross product of the 

gradients DPj. The remainder of this subsection shows how to compute the ridge direction use thing the tensor notations. 

The construction includes indices whose range is between 1 and n-1 rather than the full range between 1 and n. As 

a notational aid, indices in the range 1 through n-1 will be subscripted with a zero. Indices in the full range are 

unsubscripted. The index n is the dimension of space and does not indicate a free index. 

Define wi = vin , γ =λn and R = wif,i. Let  denote a smoothly varying orthonormal matrix whose last column is 

w and whose first n-1 columns span ≺w≻⊥. The first n-1 eigenvectors and the smooth basis for ≺w≻⊥ are related by 
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where is an orthogonal matrix, define 

 

so  if and only if . The ridge algorithms will require differentiating . 

Orthonormality of  implies 

 

differentiating yields 

 

The derivatives  can be written in terms of the orthonormal basis as 

 

where ajlm is a continuous quantity that will be determined later. Replacing this in the previous equation yields 

 

Thus, ajlm is antisymmetric in its first two indices. Without loss of generality, we can choose , 

(i0 ≠ j0) since these components represent rotations of the vectors within the orthogonal complement of w. The 

vectors must be a solution to 

 

differentiating  yields 

 

The  are determined by the eigensystem for w, namely 

 

differentiate this to obtain 

 

substitute for wi,j  and rearrange to obtain 
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contracting with  yields 

 

This system of equations can be solved explicitly as follows. Using the relationships between the eigenvectors and 

the smooth basis, we have 

 

and 

 

The system can be reduced as shown where is the diagonal matrix whose  diagonal entry is  

and  is the diagonal inverse matrix: 

 

Substituting into the formula for  yields 
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Define 

 

These quantities play the role of the derivatives of  despite the fact that they are not necessarily the derivatives 

of some functions . 

Ridge Flow 

Given an initial approximation � to a ridge point, a flow path to the ridge is determined by gradient descent. 

Ridge points occur as absolute minimum points for the function . Note that  and 

 , so  . Therefore, the gradient descent is modeled by 

 

The solution curve terminates at time T > 0 if  or if a positive local minimum is reached, in 

which case a different starting point should be used. The point ℛ = x(T) will be used as the starting ridge point for ridge 

traversal. As in the case of 1-dimensional ridges in ℝ3, the continuous flow direction is calculated directly from (possibly 

discontinuous) eigenvectors and eigenvalues. 

• Ridge Traversal 

Let ℛ be the initial ridge point obtained by ridge flow. If T(x) is a unit length tangent vector to the ridge, then the 

ridge can be traversed by solving a system of ordinary differential equations, dx/dt = T(x). To determine T(x), note that the 

ridge curve is the intersection of n-1 surfaces implicitly defined by . The curve direction is, therefore, a 

vector which is orthogonal to all n-1 surface normals . The way to construct a vector T ∈ ℝn which is orthogonal to 

 n- 1 orthogonal vectors is to use the generalized cross product 

 

where is the permutation tensor on n symbols. Let be the permutation tensor on n-1 
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symbols; then 

 

Any sign-changes or swapping of eigenvectors within ≺w≻⊥ Produced by partial umbilics or the numerical 

eigensolver will be reflected in the determinant det(C). But since C is orthonormal, the determinant is either 1 or -1. The 

key result again is that you do not need to keep track of smoothly varying eigenfields. One can simply compute the 

eigenvectors, compute the ridge direction, and choose the sign of the direction so that the current direction forms the 

smallest angle with the previous direction. The system of equations determining the traversal is therefore 

 

where the two traversals are required. 

3.2.2. The Generalized Algorithm in n-D Riemannian Geometry 

The general height ridge definition for 1-dimensional ridges which was discussed in detail in section (3.2.1) is 

extended to the case of Riemannian geometry. Let f,ij v
j
.k = vi

.jλ
j
.k where λ is a diagonal tensor whose j th diagonal entry is the 

generalized eigenvalue corresponding to the generalized eigenvector which is the j th column of vi
.j treated as an n × n 

matrix.  

Define Pj = vi
.j f,i. and according to the height ridge definition, a point x ∈ ℝn is a 1-dimensional ridge point if Pj(x) 

= 0 for  

1 ≤ j ≤ n - 1 and λn-1(x) < 0. 

Using the same convention for index notation as in subsection (3.2.1), we can extend the equations in that section. 

Equation (3.7) generalizes to 
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where  is the diagonal inverse tensor for the diagonal tensor whose  diagonal entry is . 

The vector w is the generalized eigenvector corresponding to eigenvalue γ = λn and the value R = wif,i. The summation over 

j0 is not intended as a tensor summation, but is a simple arithmetic sum, so the rule for pairing a contravariant and a 

covariant index does not apply here. The model for ridge flow given by equation (3.8) generalizes to  

 

where � is an initial approximation to the ridge. If the flow terminates at time T > 0 where P(x(T)) = 0, then ℛ = 

x(T) is used as the starting ridge point for ridge traversal. The summation over i0 is not intended as a tensor summation, but 

is just a simple arithmetic one, so the index convention of pairing a covariant with a contravariant index does not apply 

here. Finally, ridge traversal in equation (3.9) generalizes to 

 

where  and  are the permutation tensors on n symbols. the 

raising of the indices on the permutation tensor is necessary to guarantee that dxi /dt is a tangent vector. 

CONCLUSIONS 

The two algorithms in this paper confirmed the results in the 2-dimensional images in [6, 21]. For details, the 

ridges on the two images (saddles and translate) can be obtained using the algorithm in section 3 in [6]. 
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